

Efficiency and Capacity Utilisation of Tourism Industries using DEA

A Seminar in the Tourism Series, VMS, Victoria University of Wellington, NZ

Tourism Research Fellow, VMS. 26th September 2007

Seminar Overview

- Where it all started!
- Tourism Economic Structure
- Tourism Financial Benchmarks
- Financial and Economic Sustainability
- Some Intermediate Results and Conclusions
- Triangulation using DEA
- DEA Discussion and Results

2001 Research Question

- Are there "yield" strategies to improve the financial and economic viability of tourism enterprises? – NZ Tourism Strategy 2010 #29.
- Research programme to address "tourism yield" undertaken by TIANZ and TMT and managed by Lincoln University from 2004-2007.
- My role in this programme addressed tourism related and tourism characteristic enterprise performance via a benchmark system.

NZ Tourism Economic Structure

A NZ Tourism Benchmark System

J & H Moriarty Ltd

Approaches to Financial & Economic Sustainability

- Financial sustainability criteria are also legal requirements under the Companies Act – solvency.
- Economic Sustainability combines Pareto efficiency and long term equity. (welfare monotonicity).
- Enterprise Economic Sustainability was modelled via estimations of enterprise economic returns (EER) versus estimations of investor's expected economic returns (IER), over time – an opportunity approach using free cash flows.
- EES \approx Average (EER \geq IER) over time.

Measures of Economic Sustainability – Financial Yield

 Adoption of Financial Yield (FY) as a proxy for enterprise economic returns (EER).

 $EER \approx FY = \frac{(GOS - Tax + Financing)}{AssetsEmployed} \approx \frac{FreeCashFlow}{AssetsEmployed}$

- Where GOS is gross operating surplus and Financing includes all costs of money or asset leases.
- FY is "free cash return on assets (resources) employed"
 - After Miller & Modigliani (1961), Stewart (1991).

J & H Moriarty Ltd

Measures of Economic Sustainability – Financial Yield continued

For Investors $IER = \frac{(Returns - Tax)}{Investment} \sim \frac{InvestorFCF}{Investment}$

- IER is a %, (e.g. Mortgage Rate, Lending Rate or Risk Adjusted Rate might reflect an appropriate target to aim for).
- Owner-Operators might use a Mortgage Rate (5%),
- Trading Banks use the Base Lending Rate (6.3%), and Equity Investors use the Weighted Average Cost of Capital (12%).
- These rates are indicative the Pareto efficiency hurdles that tourism businesses should exceed to demonstrate economic sustainability.

J & H Moriarty Ltd

Data

Sources:

- In-depth survey of a sample of tourism enterprises in Rotorua and Christchurch, n=70.
- Extraction and analysis of tourism related and characteristic enterprises from Statistics NZ Datalab. Financial Data based on Annual Enterprise Surveys 1999-2003, n~57,000.
- Data Issues:
 - Privacy, confidentiality and minor willingness to co-operate(in RO and CHCH)

Tourism's FY Profile & Benchmarks

Observations

- Retail and Recreation are FY exemplars.
- Accommodation is consistently below each Investor benchmark.
- Economic sustainability is an *issue* for Accommodation in the absence of propertybased capital gains (would have added another 2% for 1999-2003).
- High asset structures appear to underpin Accommodation sector weakness.

Diagnosis?

- FY is a useful as a performance hurdle.
- Its decision support capabilities are limited as there are many contributing variables.
- Triangulation needed!
 - Postulate that analysis of enterprise efficiency and resource utilisation may help to refine proprietor decision strategies.

Efficiency

- Standard approach: Output/Input.
- Choice of inputs and outputs important.
- Comparisons of one enterprise with another can be problematic if the relationship between inputs and outputs is unknown – i.e. unknown production functions.
- Data Envelopment Analysis is a method of gauging relative efficiency where production functions are unknown.

Data Envelopment Analysis

- Data envelopment analysis is a
 - Frontier methodology (vs. regression)
 - A non-parametric form of analysis
 - Provides "relative" technical (T) efficiency rankings.
 - E.g. A, B, C & D are on the Efficiency Frontier and are T-efficient

E is not on the frontier and is inefficient with respect to A, B, C & D

DEA Formulation

- Linear Programming implements this search
- Results identify <u>relative</u> technical efficiency, returns to scale, exemplars & optimum parameters for anomalars.

Those Mathematical bits!

Tourism Data – Ex SNZ Datalab

Related and Characteristic Division	DMU	Rev	Matls	Int	Labour	Depn(f)	Assets(f)	OSBT(o)	SWWP(o)
G511010 Supermarkets	1	7.7507	6.7584	0.0186	0.5958	0.1105	1.5037	0.2673	0.0268
G511020 Groceries and Dairies	2	1.2946	1.1577	0.0067	0.0413	0.0140	0.4283	0.0749	0.0314
G512100 Fresh Meat/ Fish and Poultry Retailing									
	3	0.4514	0.3681	0.0036	0.0547	0.0071	0.0912	0.0180	0.0065
G512200 Fruit and Vegetable Retailing	4	0.2731	0.2370	0.0020	0.0185	0.0039	0.0615	0.0117	0.0034
G512300 Liquor Retailing	5	0.8821	0.7899	0.0042	0.0466	0.0105	0.2436	0.0309	0.0070
H571010 Hotels (Accommodation)	40	0.9085	0.5203	0.0506	0.2643	0.0666	1.4343	0.0068	0.0074
H571020 Motels and Motor Inns	41	0.4569	0.2792	0.0244	0.0710	0.0389	1.0012	0.0434	0.0127
H571030 Hosted Accommodation	42	0.0809	0.0477	0.0067	0.0123	0.0101	0.3462	0.0042	0.0034
H571040 Backpacker and Youth Hostels	43	0.0588	0.0315	0.0042	0.0096	0.0060	0.1374	0.0075	0.0013
H571050 Caravan Parks and Camping Grounds									
	44	0.0819	0.0484	0.0038	0.0129	0.0063	0.2955	0.0105	0.0012
H571090 Accommodation nec	45	0.1464	0.0789	0.0048	0.0409	0.0098	0.3517	0.0119	0.0005
P921000 Libraries	62	0.0588	0.0260	0.0001	0.0225	0.0071	0.1088	0.0032	0.0002
P923x00 Zoos, Botanic Gardens Recreation Parks &									
Gardens	63	0.2248	0.1072	0.0013	0.0973	0.0125	0.4409	0.0065	0.0007
P924x00 & P925x00 Creative Arts	64	0.3419	0.1798	0.0044	0.0609	0.0160	0.3492	0.0808	0.0150
P93xxxx0 Racing, Gambling, Lotteries and Other Recreation									
	65	3.3158	2.1076	0.2485	0.4627	0.1822	2.8932	0.3148	0.0223

Data is the Annual Average for 1999-2003, in \$B

DEA Findings

Consolidated Division	Average T-Efficiency NIRS - Output
Retail (R)	81%
Accommodation (C)	48%
F&B (C)	52%
Transport (C)	67%
Leasing (C)	88%
Recreation (C)	84%

FY ConcordanceTests

R²

Model	Out-CRS	Out-VRS	Out- NIRS
Spearman	0.389	0.430	0.447
Pearson	0.400	0.410	0.423

EXEMPLARS – 100% NIRS Efficient

G511020 Groceries and Dairies
G522100 Clothing Retailing
G523200 Floor Covering Retailing
G523500 Recorded Music Retailing
G524200 Toy and Game Retailing
G524400 Photographic Equipment Retailing
G525100 Pharmaceutical/ Cosmetic and Toiletry Retailing
G525200 Antique and Used Good Retailing
G531300 Trailer and Caravan Dealing
G532200 Automotive Electrical Services
G532300 Smash Repairing
G532400 Tyre Retailing
G532900 Automotive Repair and Services nec
I630300 Inland Water Transport
I662x00 Stevedoring, Terminals, Ports and Services nec
I663000 Services to Air Transport
I664100 Travel Agency Services
L774x00 Other Transport Equipment & Plant Leasing
P921000 Libraries
P924x00 & P925x00 Creative Arts
P93xxxx0 Racing, Gambling, Lotteries and Other Recreation

Accommodation Scale Efficiency

Division Results 1999-2003

Selected Divisions	Scale	Scale Efficiency	FY
H571010 Hotels (Accommodation)	Decr	85%	3.8%
H571020 Motels and Motor Inns	Decr	90%	5.3%
H571030 Hosted Accommodation	Incr	99%	2.7%
H571040 Backpacker and Youth Hostels	Incr	90%	6.7%
H571050 Caravan Parks and Camping Grounds	Incr	96%	3.7%
H571090 Accommodation nec	Incr	95%	3.6%
H572000 Pubs/ Taverns and Bars	Decr	92%	11.7%
H573000 Cafes and Restaurants	Decr	53%	10.0%

Improving FY – But How?

- The Output DEA model *broadly* mirrors FY performance, but generally improvements to FY are related to trading rather than to Asset substitution (particularly in Tourism Characteristic Industries).
- If Assets were constrained, what would the optimum trading parameters need to be to maximise FY?

DEA Capacity Utilisation Model

- Capacity Utilisation is the degree to which input restrictions limit outputs.
- Construct a DEA model where inputs are divided into two separate parts, an unconstrained Variable portion and a constrained Fixed portion.
- An optimal operating regime can be calculated by freezing Assets and Depreciation and allowing Revenue, Materials, Labour & Financial Expenses to vary.

J & H Moriarty Ltd

Capacity Utilisation (CU) Results

Spearman FY:CU R ²	Consolidated Division	Average Capacity Utilisation**
0.82	Retail 50%	
Pearson EY:CU R ²	Accommodation	6%
	F&B	11%
0.74	Transport	23%
	Leasing	12%
	Recreation	24%

Average Capacity Improvement Factors

Consolidated Division	Rev Opt	Matls Opt	Int Opt	Labour Opt	FY Opt
Retail (R)	1.23	1.28	1.48	1.01	24%
Accommodation (C)	7.19	9.88	1.44	3.42	22%
F&B (C)	4.00	5.41	1.88	1.43	27%
Transport (C)	5.72	11.39	1.94	2.37	26%
Leasing (C)	14.70	27.28	1.41	13.94	37%
Recreation (C)	5.42	8.85	19.41	1.91	27%

Conclusions

- Interesting application of DEA to examine relationships between FY, Efficiency & Capacity Utilisation
 - FY concords well with Capacity Utilisation but less well with Technical Efficiency. This is consistent with the role of capital resources in Tourism production.
- Asset utilisation is one of NZ tourism's greatest challenges (seasonality, pricing, scale of operation).
- Triangulation is an essential component of enterprise benchmarking given the number of variables involved.

References:

Anderson, R.I., Fok, R. and J. Scott (2000). Hotel industry efficiency: an advanced linear programming
examination. American Business Review, 18 (1): 40-48.
Banker, R., Cooper, W., Sieford, L., Thrall, R., Zhu, J., (2004), "Returns to Scale in Different DEA Models", EJOR, 154, 345-362
Banker, R.D. and R.C. Morey (1986). Efficiency analysis for exogenously fixed inputs and outputs. Operations Research, 34 (4): 513-521.
Banker, R.D., Charnes, A.C. and W.W. Cooper (1984).Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30 (9): 1078-1092
Bell, R.A. and R.C. Morey (1995). Increasing the efficiency of corporate travel management through macro benchmarking. Journal of Travel Research 33 (3): 11–21
Balton V and Vickers S P (1903) Domitting DEA A Vicial Interactive Approach based on Multiple
Criteria Analysis, Journal Operational Research Society, Vol 44, No 9, p885
Charnes, A.C., Cooper, W.W. and E. Rhodes (1978). Measuring the efficiency of decision making units.
European Journal of Operational Research, 2 (6): 429-444.
Cooper, W.W., Seiford, L.M. and J. Zhu, (Eds.) (2004). Handbook on Data Envelopment Analysis. London
Kluwer Academic Publishers.
Cooper, W.W., Seiford, L.M. and K. Tone (2000). Data envelopment analysis. A comprehensive test with models. applications. references and DEA-Solver software. Boston. MA: Kluwer
Academic Publishers.
Dantzig, G. and Orden A., (1952), "A duality theorem based on the simplex method", pp. 51-55 Directorate of Management Analysis "Symposium on Linear Inequalities and Programming", USAF, Washington, April
Färe R Grosskonf S and Kokkenlenberg E (1989) "Measuring Plant capacity utilisation and technical
change: a non-parametric approach". International Economic Review. 30: 655:666.
Färe, R., Grosskopf, S., and Lovell, C., (1994), "Production Frontiers", Cambridge University Press, New York
Färe, R., Grosskopf, S., Kirkley, J. E. and Squires, D., (2000). 'Data Envelopment Analysis (DEA): A
Framework for Assessing Capacity in Fisheries When Data are Limited', presented at th
IIFET X conference, July. Para. 4.
Farrell, M. J., (1957), The Measurement of Productive Efficiency, J. Roy. Stat. Soc. (A) 120, 253 -281
Grosskopf, S., (1986) "The role of the Reference Technology in measuring Productive Efficiency", The Economic Journal 96 pp. 499-513
Hruschka, H. (1986) Ansätze der Effiziennessung von Betrieben. Journal für Betriebswirtschaft, 36 (2), 76 -85
Johansen, L., (1968), Production functions and the concept of capacity, in: Recent research on the function of
production, Namur, France: Namur University Centre for Study and Research, pp.50, Vol 2.
Meharabian, S. et al, (2000), An Assurance Interval for the Non-Archimedean Epsilon in DEA Models, Operations research, Vol 48, No. 2, pp. 344-347
Miller, M. H., Modigliani, F., 1961, Dividend Policy, Growth and the Valuation of Shares, The Journal of Business, Vol. 34, No. 4, (Oct., 1961), pp. 411-433.
Moriarty, J. P., (2006), Enhancing Financial and Economic Yield in Tourism: Analysing New Zealand's
Tourism Satellite Accounts for Measures of Sector Performance and Business
Benchmarks. TRREC Yield Report No. 2, Lincoln University, Canterbury NZ, P8,
URL:http://www.moriarty.biz/tourism_bibliography.htm
Moriarty, J. P., (2007), Enterprise Benchmarks for New Zealand Tourism Char acteristic and Related Industries 1999-2003, TRREC Yield Report, Lincoln University, Canterbury NZ, P3,
URL:http://www.moriarty.biz/tourism_bibliography.htm
Porter, Michael E., (1985), Competitive Advantage, The Free Press, p3.
Price Waterhouse Coopers, (2001), Cost of Capital Report, December 2001, Tourism and Leisure Sector
Stavins, R.N., Wagner, A. F., Wagner, G., 2003, Interpreting sustainability in economic terms: dynamic
efficiency plus intergenerational equity, Economics Letters 79, pp. 339-343
Stewart, G. Bennet, (1991), The Quest or Value: the EVA Management Guide, Harper Collins, p85
TMT, Ministry of Tourism, (2007), New Zealand Commercial Accommodation Monitor 1999 - 2003.
Wöber, K.W. (2002). Benchmarking in Tourism and Hospitality Industries: The Selection of Benchmarking
Partners. Wallingford: CABI Publishing. Ch 4